Vocabulaire ensembliste et logique 1ère

Sacha Darthenucq

1 Ensembles et sous-ensembles

1.1 Définition

<u>Définition</u>: Un ensemble, au sens mathématique, est une collection d'objets mathématiques.

Notation: Pour former l'ensemble E de la collection d'objets x_1, \ldots, x_n on note $E = \{x_1; \ldots; x_n\}$. Les éléments de la collection d'objets sont compris entre des accolades $\{\}$ et sont séparés par des points virgules $\{\}$.

Remarque: 1 désigne l'élément 1 tandis que {1} désigne un ensemble contenant un seul élément qui est 1.

Remarque: L'ensemble ne contenant aucun élément est appelé l'ensemble vide et est noté \varnothing .

Exemple:

- $E = \{1, 2, 5\}$ est un ensemble contenant les chiffres 1, 2 et 5.
- $E = \{\{1,2\}; \mathbb{R}\}$ est un ensemble contenant 2 ensembles, l'ensemble $\{1;2\}$ et l'ensemble \mathbb{R}

On peut avoir des ensembles d'ensembles!

Remarque: $\{1;2\}$ désigne un ensemble dont les éléments sont 1 et 2, tandis que $\{\{1;2\}\}$ désigne un ensemble dont l'unique élément est l'ensemble $\{1;2\}$.

1.2 Appartenance, inclusion

<u>Définition:</u> On dit qu'un élément x appartient à un ensemble E, si l'élément x est présent dans la collection d'objets décrite par l'ensemble E. On note alors $x \in E$, le symbole \in voulant dire appartient à.

Exemple:

- Pour $E = \{1, 2, 5\}$, on a $1 \in E$, $2 \in E$, $5 \in E$.
- Pour $E = \{\{1,2\}; \mathbb{R}\}$, on a $\{1,2\} \in E$, $\mathbb{R} \in E$.

Remarque: Pour dire qu'un élément y n'appartient pas à un ensemble E, c'est à dire qu'il n'est pas compris dans la collection d'objet de E, on note $y \notin E$, le symbole \notin signifiant n'appartient pas à.

<u>Définition:</u> On dit qu'un ensemble A est inclus dans un ensemble E si tous les éléments de A appartiennent à E, on note alors $A \subset E$ avec \subset signifiant inclus dans. Cela se traduit mathématiquement par $A \subset E$ ssi pour tous $x \in A$, $x \in E$.

<u>Définition:</u> On appelle sous-ensemble de E tout ensemble A inclus dans E.

Remarque: On dit qu'un ensemble A n'est pas inclus dans l'ensemble E s'il existe $x \in A$ tel que $x \notin E$. On note alors $A \not\subset E$.

Exemple: Pour $E = \{1; 2; 5\}$, on a $\emptyset \subset E$, $\{1\} \subset E$, $\{2\} \subset E$, $\{5\} \subset E$, $\{1; 2\} \subset E$, $\{1; 5\} \subset E$, $\{2; 5\} \subset E$ et $\{1; 2; 5\} \subset E$.

Remarque: Ne pas confondre appartenance et inclusion. L'appartenance concerne un élément d'un ensemble, tandis que l'inclusion concerne un sous-ensemble. Ainsi en reprenant l'exemple précédent on ne peut pas dire $1 \subset E$, mais on peut dire par contre $\{1\} \subset E$ car en mettant les accolades on crée un ensemble à un élément. De même on ne peut pas dire $\{1\} \in E$.

Exemple: Cet exemple est un peu plus complexe car on va toucher à des ensembles d'ensembles: $E = \{\{1, 2\}; \mathbb{R}\}$

Peut on dire $\{1; 2\} \subset E$? Non. Pourtant on a bien mis un ensemble inclus dans un autre ensemble. Oui mais cet ensemble $\{1; 2\}$ n'est pas inclus dans E.

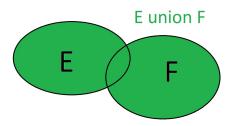
Reprenons la définition, si $\{1;2\} \subset E$ alors tout élément de $\{1;2\}$ appartient à E. Donc $1 \in E$ et $2 \in E$ ce qui n'est pas vrai!

Ici on peut dire par contre $\{\{1;2\}\}\subset E$. De même on ne peut pas dire $\mathbb{R}\subset E$ mais on peut dire $\{\mathbb{R}\}\subset E$.

1.3 Union, intersection

Définition: On définit l'union de deux ensembles E et F comme étant la collection de tous les éléments de E auquel on rajoute tous les éléments de F. On note ce nouvel ensemble $E \cup F$ avec \cup signifiant union.

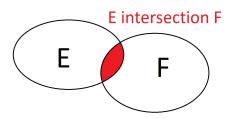
Remarque: Si un élément est présent dans chacun des ensembles, il n'apparaît qu'une fois dans leur union.



Exemple: Pour $E = \{1; 2; 5\}$ et $F = \{\{1, 2\}; \mathbb{R}\}$ on obtient $E \cup F = \{1; 2; 5; \{1, 2\}; \mathbb{R}\}$. On peut avoir des ensembles contenant des objets de différentes nature. Ici notre ensemble contient des nombres et des ensembles de nombres.

Définition: On définit l'intersection de deux ensembles E et F comme étant la collection de tous les éléments étant présents à la fois dans E et dans F. On note cet ensemble $E \cap F$ avec \cap signifiant intersection.

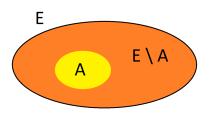
Remarque: Si E et F n'ont pas un seul élément en commun, alors leur intersection est vide, on note $E \cap F = \emptyset$.



Exemple: Pour $E = \{1, 2, 5, 9\}$ et $F = \{4, 5, 6, 7, 8, 9\}$ on obtient $E \cap F = \{5, 9\}$

1.4 Complémentaire

Définition: Soit E un ensemble et A un sous-ensemble de E. On appelle complémentaire de A dans E, le sous-ensemble $B \subset E$ tel que $A \cup B = E$ et $A \cap B = \emptyset$. Le complémentaire de A dans E est constitué de tous les éléments de E qui n'appartiennent pas à E. On le note, $E \setminus A$ (\ voulant dire : privé de), ou E.



Exemple: Soit $E = \{1, 2, 3, 4, 5\}$ et $A = \{2, 5\}, \bar{A} = \{1, 3, 4\}.$

Exemple: L'ensemble des irrationnels est l'ensemble des réels qui ne sont pas des rationnels, on note donc cet ensemble $\mathbb{R} \setminus \mathbb{Q}$.

2 Proposition mathématique

2.1 Définition et premiers exemples

<u>Définition:</u> Une proposition est un énoncé mathématique qui peut être vrai ou faux.

Exemple: Un nombre réel est toujours un nombre décimal (qui se traduit en maths par $\mathbb{R} \subset \mathbb{D}$), est une proposition bien qu'elle soit clairement fausse (voir cours sur l'introduction à l'arithmétique).

Exemple: "Tout nombre pair admet 2 comme diviseur", est une proposition mathématique qui est vraie.

2.2 Connecteurs logiques "et", "ou"

<u>Définition</u>: Le connecteur logique "et" sert à relier 2 propositions pour en former une unique. La proposition résultante est vraie si les deux propositions sont elles-même vraies.

Exemple:

- La proposition : "(Un nombre réel est toujours un nombre décimal) et (Tout nombre pair admet 2 comme diviseur)" est fausse car la sous-proposition "Un nombre réel est toujours un nombre décimal" est fausse.
- La proposition : "(La solution de l'équation ax + b = 0 est $-\frac{b}{a}$) et (Un nombre impair n'admet pas 2 comme diviseur)" est vraie car les deux sous-propositions sont vraies.

<u>Définition</u>: Le connecteur logique "ou" sert à relier 2 propositions pour en former une unique. La proposition résultante est vraie si au moins une des deux propositions est vraie.

Remarque: La proposition résultante d'un "ou" est fausse seulement si les deux propositions que le "ou" connecte sont toutes les deux fausses.

- La proposition : "(Un nombre réel est toujours un nombre décimal) ou (Tout nombre pair admet 2 comme diviseur)" est vraie car la sous-proposition "Tout nombre pair admet 2 comme diviseur" est vraie bien que "Un nombre réel est toujours un nombre décimal" soit fausse.
- La proposition : "(La solution de l'équation ax + b = 0 est $-\frac{b}{a}$) ou (Un nombre impair n'admet pas 2 comme diviseur)" est vraie car les deux sous-propositions sont vraies.

2.3 Implication, équivalence

<u>Définition:</u> Une implication est une proposition qui est la résultante de deux propositions, l'une s'appelle la condition et l'autre la conséquence. On la note " condition \implies conséquence " et elle se lit "condition entraîne conséquence", ou aussi "Si condition, alors conséquence".

Remarque: Une implication peut être vraie ou fausse.

Exemple:

- "Un nombre x est pair \implies x est divisible par 2" est une implication qui est vraie
- ullet "Un nombre x est pair $\implies x$ est divisible par 4" est une implication qui est fausse

<u>Définition:</u> Une équivalence est une proposition qui est la résultante de deux propositions, notons les P1 et P2. On la note $P1 \iff P2$, elle se lit P1 si et seulement si (ssi) P2. Cette proposition correspond à " $(P1 \implies P2)$ et $(P2 \implies P1)$ ".

Remarque: Une équivalence peut être vraie ou fausse.

Exemple:

- "Un nombre x est pair \iff x est divisible par 2" est une équivalence qui est vraie, car les 2 implications dans chacun des sens sont vraies.
- "Un nombre x est pair $\iff x$ est divisible par 4" est une équivalence qui est fausse, car bien que l'implication "est divisible par $4 \implies$ est pair" soit vraie, l'implication "est pair implies est divisible par 4" est fausse.

2.4 Négation, réciproque

La négation d'une proposition P consiste à créer une proposition non(P) telle que si P est vraie, non(P) et si P est fausse, non(P) est vraie.

Pour réaliser une telle proposition, on doit dire le contraire de ce que dit P.

Exemple: Pour $P: "x \in \mathbb{R}"$ on obtient $non(P): "x \notin \mathbb{R}"$.

Propriété: La négation de "P et Q" est "non(P)" ou "non(Q)".

Exemple: Pour $P: "x \in \mathbb{N}$ et x divisible par 2" on obtient

non(P): " $x \notin \mathbb{N}$ ou x n'est pas divisible par 2".

Propriété: La négation de "P ou Q" est "non(P)" et "non(Q)".

Exemple: Pour $P: "x \in \mathbb{N}$ ou x divisible par 2" on obtient

 $\overline{non(P)}$: " $x \notin \mathbb{N}$ et x n'est pas divisible par 2".

Définition: La réciproque d'une implication $P \implies Q$ est l'implication $Q \implies P$.

Remarque: Si une implication et sa réciproque sont vraies, alors il y a équivalence.

3 Raisonnements

3.1 Par disjonction de cas

Le raisonnement par disjonction de cas consiste à résoudre un problème en découpant le problème en différents sous-problèmes, et en les résolvant chacun séparément.

Exemple: Pour tous $x \in \mathbb{R}$, $|x| \ge 0$ (pour la valeur absolue | | voir le cours sur les intervalles et distances). On cherche à savoir si cette proposition est vraie.

Pour le savoir on va faire un raisonnement par disjonction de cas, en examinant d'abord pour $x \ge 0$ puis pour x < 0 car la valeur absolue à des comportements différents en fonction de $x \ge 0$ ou x < 0. Ce qui est intéressant, c'est qu'en procédant de cette manière, on a couvert tous les éléments de \mathbb{R} , car un élément de \mathbb{R} est soit positif ou nul, soit négatif.

- Si $x \ge 0$, alors |x| = x donc $|x| \ge 0$.
- Si x < 0, alors |x| = -x, comme x < 0 on a -x > 0 soit |x| > 0

La proposition est donc vraie.

3.2 Par contre-exemple

Pour montrer qu'une proposition est fausse, on peut fournir un cas particulier qui prouve que la proposition est fausse, cela s'appelle alors un contre-exemple.

Exemple: P:"Tout nombre pair admet 4 comme diviseur". 2 est un nombre pair mais 2 n'admet pas 4 comme diviseur, on a fournit un contre-exemple qui montre que la proposition est fausse.

3.3 Par l'absurde

Pour montrer qu'une proposition est vraie, on peut supposer qu'elle est fausse et montrer qu'on arrive alors à une contradiction.

Exemple: 0 n'a pas d'inverse. Rappel: l'inverse d'un réel a est un réel b tel que $a \times b = 1$. On le montre par l'absurde: supposons que 0 admette un inverse.

Alors il existe $b \in \mathbb{R}$ tel que $0 \times b = 1$ donc $(0+0) \times b = 1$ soit $0 \times b + 0 \times b = 1$ d'où 1+1=1. En considérant la proposition "0 n'admet pas d'inverse" comme fausse, donc en considérant "0 admet un inverse" comme vraie, on aboutit à une contradiction. Donc 0 n'admet pas d'inverse.

www.sachomaths.fr