Orthogonalité dans l'espace terminale

Sacha Darthenucq

Prérequis:

- Vocabulaire ensembliste et logique (term)
- Géométrie dans l'espace (term)

Remarque: Il est important de bien maîtriser le cours sur le produit scalaire de 1ère.

1 Produit scalaire dans l'espace

1.1 Définition et propriétés élémentaires

<u>Définition:</u> Soit \vec{u} et \vec{v} deux vecteurs de l'espace, soit A, B, C trois points de l'espace tels que $\overrightarrow{AB} = \vec{u}$ et $\overrightarrow{AC} = \vec{v}$. Il existe au moins un plan \mathscr{P} contenant ces trois points.

Nous appelons alors produit scalaire de \vec{u} et \vec{v} , noté $\vec{u}.\vec{v}$ le produit scalaire de \overrightarrow{AB} et \overrightarrow{AC} dans le plan \mathscr{P} tel qu'il a été définit en 1ère.

Si \vec{u} et \vec{v} sont non nuls, alors $\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}, \vec{v}) = AB \times AC \times \cos(\widehat{BAC})$, sinon $\vec{u}.\vec{v} = \vec{0}$.

Remarque: Toutes les propriétés du produit scalaire dans le plan sont donc toujours valables dans l'espace, et les démonstrations étant les mêmes, elles ne seront pas refaites ici.

Propriété: $\|\vec{u}\|^2 = \vec{u}.\vec{u}$

Propriété: Soit A, B, C trois points. Notons H le projeté orthogonal de C sur la droite (AB). $\overrightarrow{Alors} \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AH} = \pm \|\overrightarrow{AB}\| \|\overrightarrow{AH}\|.$

Propriété: Symétrie

Le produit scalaire est symétrique, c'est à dire que pour tous vecteurs \vec{u} et \vec{v} , $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$

Propriété: Bilinéarité

Le produit scalaire est bilinéaire, c'est à dire que:

- Pour tous vecteurs $\vec{u}, \vec{v}, \vec{w}, (\vec{u} + \vec{v}).(\vec{w} + \vec{x}) = \vec{u}.\vec{w} + \vec{v}.\vec{w} + \vec{u}.\vec{x} + \vec{v}.\vec{x}$
- Pour tous réels $k, k', (k\vec{u}).(k'\vec{v}) = kk' \times (\vec{u}.\vec{v})$

Orthogonalité 1.2

Définition: Deux vecteurs \vec{u} et \vec{v} sont dits orthogonaux ssi $\vec{u} \cdot \vec{v} = 0$.

Propriété: Soit \vec{u} et \vec{v} deux vecteurs non nuls. Soit A un point de l'espace et (d_u) et (d_v) les droites de vecteur directeur respectifs \vec{u} et \vec{v} passant par A.

 \vec{u} et \vec{v} orthogonaux \iff les droites (d_u) et (d_v) sont perpendiculaires.

Expression dans une base orthonormée 1.3

Définition: Une base de l'espace $(\vec{i}, \vec{j}, \vec{k})$ est dite orthonormée ssi les vecteurs de cette base sont deux à deux orthogonaux et de norme 1, c'est à dire que $\vec{i}.\vec{j}=0$, $\vec{i}.\vec{k}=0$, $\vec{j}.\vec{k}=0$ et $||\vec{i}||=||\vec{j}||=$ $||\vec{k}|| = 1.$

Propriété: Soit $\vec{u}(x,y,z)$ et $\vec{v}(x',y',z')$ deux vecteurs de l'espace, alors $\vec{u}.\vec{v}=xx'+yy'+zz'$.

Propriété: Soit $\vec{u}(x,y,z)$ un vecteur, alors $\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}$.

 $\frac{\text{D\'emo:}}{\text{Donc}} \, \|\vec{u}\|^2 = \vec{u}.\vec{u} = x^2 + y^2 + z^2.$

Conséquence: Soit $A(x_a, y_a, z_a)$ et $B(x_b, y_b, z_b)$ deux points de l'espace,

 $\|\overrightarrow{AB}\| = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2 + (z_b - z_a)^2}.$

$\mathbf{2}$ Intersections de droites et de plans

Orthogonalité de deux droites 2.1

<u>Définition:</u> Soit (d_u) et (d_v) deux droites de vecteurs directeurs respectifs \vec{u} et \vec{v} . (d_u) et (d_v) sont dites orthogonales ssi \vec{u} et \vec{v} sont orthogonaux ($\vec{u}.\vec{v}=0$).

Définition: Deux droites sont dites perpendiculaires ssi elles sont coplanaires et orthogonales.

Proposition: Deux droites (d_u) et (d_v) sont orthogonales ssi il existe une droite (d'_u) parallèle à (d_u) et (d'_v) parallèle à (d_v) telles que (d'_u) et (d'_v) soient perpendiculaires.

Démo: Soit A un point de l'espace, (d'_u) la parallèle à (d_u) passant par A et (d'_v) la parallèle à (d_v) passant par A.

 (d_u) et (d_v) orthogonales \iff \vec{u} et \vec{v} orthogonales \iff (d'_u) et (d'_v) sont orthogonales.

Or il existe un plan \mathscr{P} passant par le point A dont la direction comprend les vecteurs \vec{u} et \vec{v} , donc (d'_u) et (d'_v) sont coplanaires.

Ainsi (d'_u) et (d'_v) orthogonales \iff (d'_u) et (d'_v) perpendiculaires.

D'où (d_u) et (d_v) orthogonales \iff (d'_u) et (d'_v) perpendiculaires.

2.2 Vecteur normal à un plan

<u>Définition:</u> Soit \mathscr{P} un plan, un vecteur \vec{n} non nul est dit normal au plan \mathscr{P} ssi il est orthogonal à tout vecteur de la direction de \mathscr{P} .

<u>Proposition</u>: Soit \mathscr{P} un plan, un vecteur \vec{n} non nul est normal à \mathscr{P} ssi \vec{n} est orthogonal à deux vecteurs non colinéaires de la direction de \mathscr{P} .

<u>Démo:</u> Si \vec{n} est normal à \mathscr{P} , alors \vec{n} est orthogonal à tous les vecteurs de la direction de \mathscr{P} donc en particulier à deux vecteurs non colinéaires de la direction de \mathscr{P} .

Si \vec{n} est orthogonal à deux vecteurs \vec{u} et \vec{v} non colinéaires de la direction de \mathscr{P} . Alors nous avons vus que \vec{u} et \vec{v} engendrent la direction de \mathscr{P} c'est à dire que pour tout vecteur \vec{w} de la direction de \mathscr{P} , il existe deux réels λ et μ tels que $\vec{w} = \lambda \vec{u} + \mu \vec{v}$.

$$\vec{n}.\vec{w} = \vec{n}.(\lambda \vec{u} + \mu \vec{v}) = \lambda(\vec{n}.\vec{u}) + \mu(\vec{n}.\vec{v}) = \lambda \times 0 + \mu \times 0 = 0.$$

Donc \vec{n} orthogonal à tout vecteur de la direction de \mathscr{P} , donc \vec{n} vecteur normal de \mathscr{P} .

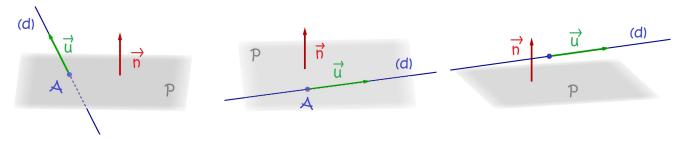
Théorème: Soit A un point de l'espace, \vec{n} un vecteur non nul. L'unique plan \mathscr{P} passant par A ayant \vec{n} pour vecteur normal correspond à l'ensemble de points M de l'espace tels que $\overrightarrow{AM}.\vec{n}=0$.

2.3 Intersection d'une droite et d'un plan

<u>Définition:</u> Soit (d) une droite de vecteur directeur \vec{u} et \mathscr{P} un plan. (d) est dite orthogonale à \mathscr{P} ssi \vec{u} est un vecteur normal à \mathscr{P} .

Propriété: Soit \mathscr{P} un plan de vecteur normal \vec{n} et (d) une droite de vecteur directeur \vec{u} passant par A.

- Si \vec{u} et \vec{n} ne sont pas orthogonaux, la droite (d) et me plan \mathscr{P} sont sécants,
- Si \vec{u} et \vec{n} sont orthogonaux, alors
 - Si $A \in \mathcal{P}$, alors (d) est incluse dans \mathcal{P} ,
 - Si $A \notin \mathcal{P}$, alors (d) est strictement parallèle à \mathcal{P} .



Intersection de deux plans 2.4

Propriété: Deux plans \mathscr{P} et \mathscr{P}' de vecteurs normaux respectifs \vec{n} et $\vec{n'}$ sont parallèles ssi \vec{n} et $\vec{n'}$ sont colinéaires. Sinon ils se coupent selon une droite.

Applications du produit scalaire dans l'espace 3

Formules de polarisation 3.1

Proposition: $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u}.\vec{v} + \|\vec{v}\|^2$.

Proposition: $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2\vec{u}.\vec{v} + \|\vec{v}\|^2$.

Proposition: Formules de polarisation

$$\vec{u}.\vec{v} = \frac{1}{2}(\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2) \qquad \text{et} \qquad \vec{u}.\vec{v} = \frac{1}{4}(\|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

 $\begin{array}{l} \underline{\text{D\'emo:}} \ \|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u}.\vec{v} + \|\vec{v}\|^2 \ \text{donc} \ 2\vec{u}.\vec{v} = \|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2. \\ \underline{\text{De plus}} \ \|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2\vec{u}.\vec{v} + \|\vec{v}\|^2 \ \text{donc} \\ \|\vec{u} + \vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2 = (\|\vec{u}\|^2 + 2\vec{u}.\vec{v} + \|\vec{v}\|^2) - (\|\vec{u}\|^2 - 2\vec{u}.\vec{v} + \|\vec{v}\|^2) = 4\vec{u}.\vec{v}. \end{array}$

3.2 Distance

D'un point à une droite

Définition: Soit M un point de l'espace, (d) une droite de l'espace. Le projeté orthogonal de M sur (d) est le point H tel que: si $M \in (d)$, alors H = M, sinon H est le projeté orthogonal de Msur (d) dans l'unique plan \mathscr{P} contenant le point M et la droite (d).

Remarque: Nous réutilisons la notion de projeté orthogonal dans le plan vu en 1ère.

Propriété: Le projeté orthogonal du point M sur (d) est le point de la droite (d) le plus proche de M.

<u>Définition:</u> Nous appelons distance de M à (d) la longueur HM avec H projeté orthogonal de $M \operatorname{sur} (d)$.

3.2.2 D'un point à un plan

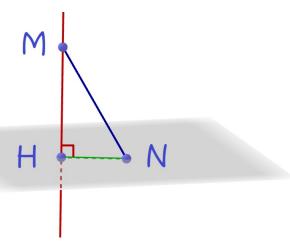
Définition: Soit M un point de l'espace, \mathscr{P} un plan de l'espace. Le projeté orthogonal de M sur \mathscr{P} correspond au point H intersection du plan \mathscr{P} et de la droite orthogonale à \mathscr{P} passant par M.

Propriété: Le projeté orthogonal de M sur \mathscr{P} correspond au point de \mathscr{P} le plus proche de M.

Démo: Soit \mathscr{P} un plan et M un point de l'espace.

Si $M \in \mathcal{P}$, alors M = H et MH = 0. Pour tout point $N \in \mathcal{P}$ distinct de H = M, MN > 0 soit MN > MH.

Si $M \notin \mathscr{P}$, soit $N \in \mathscr{P}$, $N \neq H$, \overrightarrow{HN} vecteur directeur de \mathscr{P} donc $\overrightarrow{MH}.\overrightarrow{HN} = 0$, le triangle MNH est donc rectangle en H.



D'après le théorème de Pythagore nous avons $MH^2+HN^2=MN^2,$ et comme HN>0, $MN^2>MH^2$ soit MN>MH.

Donc H est bien le point de \mathscr{P} le plus proche de M.

3.3 Équation cartésienne d'un plan

Nous nous plaçons ici dans un repère orthonormé.

Proposition: Un plan \mathscr{P} de vecteur normal $\vec{n}(a,b,c)$ a une équation de la forme ax+by+cz+d=0, c'est à dire qu'il existe d réel tel que

$$M(x, y, z) \in \mathscr{P} \iff ax + by + cz + d = 0.$$

Démo: Soit \mathscr{P} un plan de vecteur normal $\vec{n}(a,b,c)$ passant par le point $A(x_0,y_0,z_0)$.

$$M(x,y,z) \in \mathscr{P} \iff \overrightarrow{AM}.\overrightarrow{n} = 0$$

$$\iff (x - x_0)a + (y - y_0)b + (z - z_0)c = 0$$

$$\iff ax + by + cz + (-x_0a - y_0b - y_0c) = 0$$

$$M(x,y,z) \in \mathscr{P} \iff ax + by + cz + d = 0 \text{ avec } d = (-x_0a - y_0b - y_0c).$$

Proposition: Soit a, b, c trois réel dont au moins un est non nul, soit d un réel. L'ensemble des points M(x, y, z) vérifiant ax + by + cz + d = 0 est un plan de vecteur normal $\vec{n}(a, b, c)$.

Démo: Au moins un des trois réels a, b, c est non nul, supposons sans perte de généralité $a \neq 0$.

Le point
$$A\left(\frac{-d}{a},0,0\right)$$
 vérifie $ax + by + cz + d = 0$.

$$ax + by + cz + d = 0 \iff ax + by + cz + a \times \frac{d}{a} = 0.$$

$$\iff a\left(x - \frac{-d}{a}\right) + by + cz = 0$$

 $ax + by + cz + d = 0 \iff \overrightarrow{AM} \cdot \overrightarrow{n} = 0 \text{ avec } \overrightarrow{n}(a, b, c) \text{ et } M(x, y, z).$

Donc l'ensemble des points M vérifiant ax + by + cz + d = 0 correspond à l'ensemble des points M vérifiant $\overrightarrow{AM}.\vec{n} = 0$ c'est à dire l'ensemble de points du plan $\mathscr P$ passant par A et de vecteur normal $\vec{n}(a,b,c)$.

www.sachomaths.fr